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Abstract. RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze
this problem using a random pairing energy model as well as a random sequence model that includes
a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into
two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass
phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear
behavior of entropic origin in the high temperature molten phase. Transition between the two phases is
continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For
designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be
more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy
cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing
distances in the ground state secondary structure follows a remarkable power-law with an exponent −4/3,
independent of the specific assumptions for the base pairing energies.

PACS. 87.14.Gg DNA, RNA – 87.15.-v Biomolecules: structure and physical properties – 64.70.Pf Glass
transitions

1 Introduction

The three-dimensional structure (i.e. conformation) of
biomolecules is a fascinating topic due to its fundamen-
tal importance in modern biology [1]. Link between the
structure of a biopolymer and its sequence information,
however, remains at an empirical level due to the hith-
erto unyielding computational complexity in predicting
the shape of a heterogeneous polymer [2–6]. At the heart
of the problem is the lack of a general understanding on
the energetics of a collapsed polymer in the presence of
sequence-specific contact energies. Such a situation has
been compared with the low temperature behavior of the
spin glass model [7,8], although the chain constraint and
the unknown nature of sequence specificity may invalidate
the analogy.

In the present paper, we focus on the secondary struc-
ture of RNA molecules [9–13]. RNA, like DNA, is a long
chain molecule made of four different types of nucleotides:
adenine (A), uracil (U), guanine (G) and cytosine (C).
Under normal physiological conditions, an RNA molecule
folds into a relatively compact shape which can be loosely
described as a mixture of double-stranded helical segments
(known as stems) and occasional single-stranded bulges
and hairpins with tertiary contacts. The helical segments
are stabilized by base-pairing and base stacking which rep-
resent dominant contributions to the energy of a folded
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structure. Unlike a ds-DNA molecule, however, each heli-
cal segment is made of two complementary segments from
different parts of the same chain, running in opposite di-
rections. The matching of bases to form the Watson-Crick
A-U and G-C pairs, and the energetically less favorable
wobble G-U pairs defines the secondary structure of an
RNA molecule. The problem of RNA secondary struc-
ture prediction is then to find the map of optimal pair-
ings for a given sequence of the nucleotides (the primary
structure) [14]. At finite temperatures, one has to consider
structures that are not necessarily optimal in energy, but
are nevertheless important due to their configurational en-
tropy.

Compared to protein folding, RNA secondary struc-
ture prediction is a simpler problem due to the saturation
of base-pairing [9]. In particular, for RNA molecules with-
out the so called “pseudoknots”, pairing of bases in an
RNA molecule may be represented by one-dimensional,
non-intersecting rainbow diagrams [15]. Thanks to this
topological constraint, the partition function of a chain
of N bases can be determined through an exact dynamic
programming algorithm whose computational complexity
scales as N3 [16,17]. Consequently, chains of length up to
a few thousand bases can be readily investigated numeri-
cally.

From a statistical mechanics point of view, the key
issues with regard to RNA secondary structures include
a classification of possible phases of the chain in the
limit N → ∞, and the characteristics of the equilibrium
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structures in each of these phases [13,15]. At sufficiently
high temperatures, it is generally agreed that the system
is in a “molten phase” with non-specific base-pairing. Var-
ious statistical properties of this phase, including the dis-
tribution of pairing distances, are known through the an-
alytic solution to the homopolymer version of the RNA
problem [18]. A defining property of the molten phase
is the universal amplitude of the logarithmic excess en-
tropy of a finite chain [15]. As the temperature decreases,
a new type of behavior, with properties typical of dis-
ordered systems, is seen. However, many details remain
controversial [19–23].

Several simplifying models have been introduced in
the study of the low temperature glass phase of an
RNA molecule. Higgs considered a random heteropolymer
model of RNA secondary structure formation [19]. In his
model, only Watson-Crick pairing is allowed and each such
pair is assigned a negative energy. Through numerical sim-
ulations of random sequences, he observed that the ground
state is highly degenerate and the system at low temper-
atures exhibits a broad distribution of the overlap func-
tion. The same conclusion was reached in a recent work by
Pagnani et al. who also studied the molten-to-glass tran-
sition [20]. The existence of a spin-glass type ground state
in such a model is however disputed by Hartmann [21].

Bundschuh and Hwa have recently carried out exten-
sive analytic and numerical studies of the RNA secondary
structure problem [15]. They have discussed in particular
the nature and energetics of low-energy excitations in the
glass phase, and presented a proof for the existence of a
finite-temperature glass transition. They have shown that
the scaling of pairing distances in the glass phase follows a
different power from that of the molten phase (see discus-
sion in Sect. 3.2). In addition, the finite-size correction to
the free energy (termed pinching energy by the authors)
grows as a power-law of the chain length, but the exponent
is small and nonuniversal.

Krzakala et al. [22] introduced an alternative measure
of the sequence-specific pairing which is a characteristic of
the low temperature glass phase. Their approach is based
on an analogy to the directed polymer problem [24] and
the replica method. Their conclusion on the existence of
a finite-temperature glass transition is in agreement with
previous work.

While the quantities introduced by Bundschuh and
Hwa, and by Krzakala et al. provide effective measures
of the glassy order in the low temperature phase, there is
yet no microscopic understanding of the origin of the scale-
dependent energies as seen in numerical work. In partic-
ular, there is no compelling reason why power-law forms
are the preferred choice for the observed scale dependence.
This question is important not only from a theoretical
point of view, but also when considering the effect of se-
quence mutation and environmental perturbations (such
as tertiary contacts, pseudoknots, and magnesium ions,
etc.) on the RNA secondary structure. Therefore a better
characterization of the properties of the low-temperature
phase is desirable.

The paper is organized as follows. In Section 2 we in-
troduce the random pairing energy model studied in the
present work and briefly review the numerical scheme used
for exact computation of ground state and finite temper-
ature properties. Section 3 contains results and analysis
of various properties in the ground state. The behavior of
the system at finite temperatures is discussed in Section 4.
In Section 5 we consider other specification of the random
pairing energy and their effect on the properties of the
ground state. Section 6 presents a summary and our main
conclusions.

2 The model and dynamic programming

The statistical mechanics of the secondary structure of
random RNAs is reviewed in reference [15]. An RNA
molecule is defined by its nucleotide sequence. A secondary
structure of the molecule is a pairing pattern of bases
on the sequence, where each base (indexed by its posi-
tion i in the sequence) has at most one partner. As in
most previous studies, we consider here only secondary
structures that obey the “noncrossing” constraint, i.e., if
base i pairs with base j > i, and another base k > i pairs
with base l > k, then either i < j < k < l (separated) or
i < k < l < j (nesting). This class of structures, which are
the most common in nature, form the configuration space
of the RNA secondary structures considered below.

Realistic prediction of the thermodynamically favored
RNA secondary structures requires a large parameter
set derived empirically from pains-taking thermodynamic
measurements over the years [25]. Its main purpose is
to differentiate accurately local pairing alternatives. This
complication, we believe, is not necessary for a statistical
characterization of the scaling properties in the low tem-
perature phase and around the glass transition in the ran-
dom sequence ensemble. Instead, we consider here a much
simpler model where the energy of a secondary structure
S is given by,

E[S] =
∑

(i,j)∈S

εi,j , (1)

where εi,j is the pairing energy of base i with base j. The
sum is over all base pairings (i, j) of S.

To complete the description of the model, we need to
assign values to the pairing energies εi,j for a given nu-
cleotide sequence. The standard choice is to make εi,j de-
pendent on the two nucleotides involved. For the random
sequence ensemble, an alternative approach is to choose
εi,j as independent random variables, as suggested in ref-
erence [15]. This was motivated at first by analytical con-
siderations and supported by numerical evidence. In fact,
the two approaches become quite identical when the al-
phabet size exceeds sequence length, as then every pos-
sible pair has a different combination of partners for a
typical random sequence. Considering that, for real RNA,
each helical segment typically contains a consecutive stack
of five or more paired bases (with more than 45 = 1024
possible sequences on each side), one may view the second
approach as defining a coarse-grained model on the scale
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of a helical segment. Previous work on sequence alignment
has shown that the matching energy of two randomly se-
lected sequences follows a distribution with an exponential
tail [26–29]. Thus, as a coarse-grained model of RNA sec-
ondary structures in the sense described above, we choose
εi,j < 0 to be independent random variables satisfying the
distribution,

P (ε) = ε−1
0 exp(ε/ε0), (2)

where ε0 = 1 sets the only energy scale of the problem.
Due to the noncrossing constraint on the pairing pat-

terns, the partition function

Z(N) =
∑

S

exp(−E[S]/T ) (3)

of an RNA molecule of N bases at temperature T
can be calculated using a dynamic programming algo-
rithm [16,17]. This is done based on the recursive relation

Zi,j = Zi,j−1 +
j−1∑

k=i

Zi,k−1e
−εk,j/T Zk+1,j−1. (4)

Here Zi,j denotes the partition function of a contiguous
segment of the molecule from position i to position j.
Starting from the shortest segments of one base each with
Zi,i = 1, i = 1, 2, . . . , N , one obtains the partition func-
tion Z(N) ≡ Z1,N in O(N3) elementary computations.
At T = 0, the following equation can be used instead to
calculate the ground state energies,

Ei,j = mini≤k≤j{Ei,k−1 + Ek+1,j−1 + εk,j}, (5)

where as a convention we set εi,i = 0 for all i, and Ei,j = 0
for i ≥ j.

3 The ground state

In this section we present numerical results regarding the
ground state of an RNA molecule in the random sequence
ensemble. Chains up to N = 2048 bases are investigated,
with a minimum of 1000 realizations of the pairing ener-
gies. Results for shorter chains are obtained as a byprod-
uct in the computation.

3.1 Ground state energy

It has been suggested [15,22] that the statistical mechan-
ics of the RNA problem may be closely related to that of a
directed polymer in a disordered medium, which has been
studied extensively in the past [30]. In the latter case, the
ground state energy of the polymer (or its free energy at
finite T ) contains a finite-size correction which grows as
a power of the chain length [31,32]. This energy is of the
same order as the disorder-induced energy fluctuations,
with an exponent that takes a universal value through-
out the low temperature phase. It is thus interesting to
examine such corrections for the RNA problem as well.

(a) (b)
A B

Fig. 1. Rainbow diagrams illustrating allowed base pairing
(dashed line) on (a) a single chain, and (b) two separate parts
when the chain is broken in the middle.

The origin of an excess energy associated with a chain
of finite length can be appreciated with the help of Fig-
ure 1. Dashed lines in the figure indicate pairing of the
bases. Cutting the chain in the middle yields two shorter
chains half of the original size. All pairing patterns of the
two shorter chains can be realized on the longer chain,
but the reverse is not true. Therefore the free energy of
the chain increases when it is broken into smaller parts.
This property translates directly to an excess free energy
for a chain of finite length.

The importance of quantifying this excess energy has
been stressed by Bundschuh and Hwa [15]. Due to the non-
crossing constraint, when two bases i and j on the chain
form a pair, those within the segment delimited by the
two are only allowed to pair among themselves. Therefore
any pairing of the bases effectively defines a finite sys-
tem isolated from the rest of the chain. For the pairing to
be energetically favorable, its energy εi,j must offset the
energy cost for splicing out the segment inbetween. Argu-
ments along this line can be used to discuss the stability
of a given state as done in reference [15] to construct a
lower bound on the glass transition temperature.

Here we examine not only the average value but also
the distribution of the excess energy as a function of the
chain length. Due to the statistical fluctuations in the
bond energies, the total ground state energy E(N) of a
chain of length N has a fluctuation proportional to N1/2.
This background fluctuation can be eliminated using the
construction shown in Figure 1b. A chain of length 2N is
formed by joining two chains A and B, each of length N .
Let ∆EN ≡ E1,N +EN+1,2N −E1,2N be the energy gained
when bases on chain A are allowed to pair with bases on
chain B to form the ground state of the full chain. Apart
from the energy of a single pair, this quantity is identical
to the pinching energy introduced in reference [15]. Chem-
ically, it can be considered as the heat of “reaction” that
brings the two halves together. Obviously, ∆EN is typi-
cally positive but may happen to be zero when the ground
state of the full chain breaks into two independent halves.

Figure 2a shows the normalized distribution P (∆E, N)
of ∆EN for N = 2, 4, 8, . . . , 1024 on semi-log scale. As N
increases, the peak of each curve shifts to the right while at
the same time its width also increases. In addition, there
is a finite statistical weight P0(N) ∼ N−4/3 at ∆E = 0
(see Fig. 4a), Figure 2b shows a scaling plot of the dis-
tributions. Here 〈∆EN 〉 and WN =

√〈∆E2
N 〉 − 〈∆EN 〉2

denote the mean value and standard deviation of ∆EN ,
respectively. Convergence to a limiting form at N = ∞
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Fig. 2. (a) Distribution of the excess energy ∆EN of a finite
chain for N = 2, 4, . . . , 1024. (b) Convergence to a limiting
form with zero mean and unit variance. Arrows indicate the
direction of increasing N .
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Fig. 3. Mean value and standard deviation of ∆EN against
ln N . Solid and dashed lines represent polynomial fits to the
data.

starts from the middle of each curve and gradually ex-
tends over to the wings. Interestingly, the tail of the dis-
tributions at large ∆E decays as a simple exponential.

Figure 3 shows 〈∆EN 〉 and WN against lnN . It is ev-
ident that the two quantities are not proportional to each
other, i.e., the distributions shown in Figure 2 can not be
collapsed with a single energy scale at each N . Neverthe-
less, the data can be represented nicely by a quadratic
function in lnN for 〈∆EN 〉, and a linear function in lnN
for W . This suggests that the disorder averaged ground
state energy can be written in the form,

〈E(N)〉 = e0N + a + b ln N + c ln2 N, (6)

where e0 is the energy per base in the infinite size limit.
From the fit we obtain a = 0.81, b = 1.28, and c = 0.26.

Although the logarithmic form (6) fits the data nearly
perfectly, a power-law dependence can not be ruled out
based on the numerical data alone [15,22]. Previously,

Bundschuh and Hwa [15] made the suggestion that the
logarithmic size dependence is more appealing given the
small and nonuniversal exponent obtained from various
models. Here we show that the difference in behavior for
〈∆EN 〉 and WN is still consistent with a single energy
scale at each N which grows as ln N . In such a scenario,
the ln2 N term arises naturally as 〈∆EN 〉 also contains
contributions from smaller scales. Specifically, with refer-
ence to Figure 1b, we may first group bases on either side
of the break into zones that are evenly spaced on a loga-
rithmic scale, according to their distance R (measured in
terms of number of bases along the chain) to the breaking
point. Let l = ln R be the index of zone l with a width of
order R, and suppose that the typical total energy increase
of bases in the zone caused by the break is proportional
to ln R. Adding up contributions up to l = lnN yields the
desired ln2 N dependence. In comparison, fluctuations of
∆EN do not contain this cumulative effect.

The ln N energy scale may be motivated from the
extreme value statistics argument developed in refer-
ences [15,26–29]. According to equation (5), when a
new base is added to the end of a chain of length
N , optimal pairing with interior bases is determined by
the competition between the energy cost for perturbing
the existing ground state [i.e., the first two terms on the
right-hand-side of Eq. (5)], and the energy gain from the
newly formed pair. The perturbation is at its weakest
when the partner base k is located at either end of the
chain. In such a situation, the number of bases at such
distances is small, so the available choices for the bond
energy εk,j are rather limited. On the other hand, when k
resides in the middle of the chain, the perturbation is the
strongest, but then there are of order N choices for εk,j

which, according to the extreme value statistics, yield a
typical energy gain proportional to lnN . If ∆EN grows as
a power of N , this energy gain will not be enough to offset
the energy cost associated with the perturbation. Conse-
quently pairing with a base in the middle of the chain
is extremely unlikely. This however would imply that the
chain contains almost exclusively short-distance pairs. If
this were the case, the system would have a finite corre-
lation length and a bounded ∆EN , which contradicts our
original assumption. Self-consistency thus requires ∆EN

to grow slower than any power of N , but at least as fast
as ln N .

3.2 Pairing statistics

In addition to the ground state energy, we have examined
the statistics of pairing distance d in the ground state.
When two bases i and j > i form a pair, their pairing
distance is defined as dij = j − i. In fact, for a chain of
length N , pairs of size d are equivalent to pairs of size
N − d. This becomes evident if we join the two ends of
the chain to form a circle, in which case distance between
the two bases is given by the smaller of d and N − d.
Let Ps(d) be the distribution of d. Symmetry then yields
Ps(d) = Ps(N−d). Figure 4a shows the distribution Ps(d)
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Fig. 4. Pairing statistics in the ground state. (a) Distribu-
tion Ps(d) of pairing distance d at N = 2048 (solid line). Also
shown is P0(N) against N (circles). (b) A scaling plot of the
distribution of the optimal break point for N = 2, 4, . . . , 1024.
Dashed line in both figures indicates a power-law function with
an exponent η = −4/3.

for a chain of length N = 2048, averaged over 1000 real-
izations of the εi,j ’s. From the plot, we see that, apart
from those data points near d � N/2 which are influenced
by finite-size effects, Ps(d) follows a power-law function dη

with an exponent η = −4/3. Also shown in the figure is
P0(N), the probability that the ground state breaks into
two independent halves as shown in Figure 1b, against
N which has a similar behavior. Note that, for each N ,
P0(N) is the same as P (∆E) at ∆E = 0 (cf. Fig. 2a).

We have also examined the statistics of the location of
base k where the minimum on the right hand side of equa-
tion (5) is achieved. Let R be the distance of this base to its
partner base j. The distribution Pb(R, N), with N being
the length of the interval (i, j), is shown in Figure 4b using
the scaled variables. Here N = 2, 4, 8, . . . , 1024. From the
data collapse we conclude that Pb(R, N) obeys scaling,

Pb(R, N) = N−4/3Φ(R/N), (7)

where Φ(x) ∼ x−4/3 for x 	 1.
The scaling properties of base pairing in the ground

state as discussed above are consistent with the roughness
of “mountain diagrams” introduced in reference [15]. In
the latter representation, a given secondary structure is
mapped to a height profile following a simple rule: starting
from one end of the chain, say i = 0 with h0 = 0, one
proceeds successively to the right, setting hi = hi−1 + 1
(hi = hi−1 − 1) if base i is paired with base j > i (j < i),
and hi = hi−1 if base i is unpaired. Bundschuh and Hwa
have shown that the average value of hi as defined above
grows as a power-law of the chain length N , h ∼ N ζ ,
where the “roughness exponent” ζ = ζg = 0.67 ± 0.02,
considerably larger than its value ζ0 = 1/2 in the molten
phase. As shown in reference [22], the two exponents ζ
and η satisfy a general scaling relation,

ζ = 2 + η. (8)

Equation (8) holds both in the ground state and in the
molten phase, where η0 = −3/2 has been calculated ex-
actly.

4 Finite temperature properties and the glass
transition

At finite temperatures, one needs to consider the entropy
associated with alternative pairing to determine the equi-
librium structure of an RNA molecule. Comparing equa-
tions (4) with (5), we see that qualitatively two types of
behavior can be distinguished: (i) only one or a few terms
on the right hand side of (4) contribute to Zi,j , in which
case the situation is similar to that of the ground state;
(ii) the number of terms that contribute significantly to
Zi,j grows with the chain length, in which case pairing
becomes non-specific and one is in the molten phase.

As a quantitative criterion that differentiates the two
situations, Bundschuh and Hwa [15] proposed to examine
the size dependence of the free energy cost for imposing a
pairing (termed “pinching”). At sufficiently high temper-
atures, the pinching free energy ∆F grows with the pair
size N as 3

2T ln N , and hence is purely entropic. Based
on an estimate of the energy gain for the best matched
pair forbidden by the pinch, Bundschuh and Hwa argued
that this behavior cannot continue below a certain tem-
perature, and hence a glass transition is expected to take
place. Therefore the size-dependence of ∆F can be used
to locate the phase transition point.

Following this line of thinking, we consider the statis-
tics of ∆FN ≡ T ln(Z1,2N/Z1,NZN+1,2N) which is the fi-
nite temperature analog of ∆EN defined in the previous
section. Figure 5a shows the mean value of ∆FN against
ln N , with the high temperature behavior [15] (3/2)T ln N
subtracted from the data. For T = 1.25 and below, there
is a clear upward curvature in each data set, indicating
presence of a ln2 N term, though its amplitude decreases
with increasing temperature. At T = 1.5 and 1.75, how-
ever, deviations from the expected high temperature be-
havior is weak. Figure 5b shows the standard deviation
WF,N ≡ √〈∆F 2

N 〉 − 〈∆FN 〉2 against lnN . Using data
points at large N , we extracted the slope A(T ) of each
curve and plotted the result against T as in the inset. The
result can be summarized as,

WF,N =

{
A(T ) ln N + B(T ), T < Tg;
B(T ), T > Tg.

(9)

Here A(T ) = A0(T − Tg)2, with Tg � 1.7.
The simple functional forms which fit well the numeri-

cal data strongly suggest that there is an underlying sim-
ple mathematical structure. It is quite conceivable that
a renormalization group theory, similar to the one intro-
duced in reference [27] for the unbinding transition of two
heteropolymers, can be devised. In the absence of such
a theory, equation (9) should merely be considered as a
convenient representation of numerical data.
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5 Other models for the pairing energy

We have argued in Section 2 that equation (2) provides a
generic description of the distribution of pairing energies
on a coarse-grained scale. To verify this hypothesis, and to
find out to what extent the scaling properties obtained un-
der (2) remain universal, we consider in this section other
forms of the pairing energy, and carry out a comparative
study of their ground state properties.

5.1 A sequence-based model

To get a flavor of the similarities and differences between
random sequence models (with N random variables) and
random pairing energy models (with N2 random vari-
ables), we consider here a simplified four-nucleotide model
incorporating the essential features of base-pairing ener-
getics [14]. In addition to the Watson-Crick A-U and G-C
pairs, we allow the less favorable G-U pair. A stacking en-
ergy is included for the propagation of short helices, i.e.,
if two consecutive bases i and i + 1 pair with j and j − 1,
respectively, an additional energy Es is gained. The min-
imal hairpin loop length is set at 4 nt. Results presented
below are for the following choice of energy parameters:
Es = −3; EGC = −3−Es; EAU = −2−Es; EGU = −1−Es.
With this specification, isolated pairings are disfavored. In
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Fig. 6. Mean value and standard deviation of the excess energy
of a finite chain in the random sequence ensemble.

the ground state, the typical length of a helix is about five
base pairs for a random sequence.

Figure 6 shows the mean value and standard devia-
tion of ∆EN against lnN for the random sequence en-
semble. The behavior is very similar to that of Figure 3.
We have also examined the statistics of the pairing dis-
tances whose distribution fits well to the scaling form (7)
with η = −4/3. These and other properties of the ground
state will be reported in detail elsewhere.

5.2 Power-law distribution of the pairing energy

As we mentioned above, the logarithmic size dependence
of pairing energies is a generic feature of matching statis-
tics for random sequences. Through evolution, however,
sequences that lead to more stable structures may be se-
lected for functional advantages, including possibly RNA’s
with longer matched segments. Indeed, the secondary
structure of many real RNA’s show extended stretches
of duplices which are not expected of a random sequence.
This observation motivates us to examine the ground state
energetics and pairing pattern under a power-law distri-
bution of the pairing energies,

P (ε) = α|ε|−α−1, ε ≤ −1. (10)

Figure 7 shows the mean and standard deviation of ∆EN

against N for α = 2, 3, and 4. At sufficiently large N , the
two quantities become proportional to each other, indi-
cating a single energy scale ∆EN ∼ Nω. The exponent ω
can be related to α from the following consideration. On
a chain of length N , there are N(N − 1)/2 possible pair-
ings. The lowest pairing energy εmin is determined by the
condition N2|εmin|−α ∼ 1. Hence εmin ∼ −N2/α. Assum-
ing the energy cost for breaking a chain into two halves is
dominated by εmin of the strongest bond, we obtain,

ω = 2/α, (11)

which agrees well with the numerical data.
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Fig. 8. Scaling plot of the distribution of the optimal break
point along a chain of length N for the power-law pairing en-
ergy model.

We have also investigated the distribution of the pair-
ing distance under equation (10). Interestingly, the results
are quite insensitive to the value of α, and the exponent
η is unchanged from its value −4/3 under (2). Figure 8
shows a representative case at α = 2. The result is nearly
identical to Figure 4b. The good data collapse confirms
validity of equation (7) for power-law pairing energies.

6 Summary and conclusions

In this paper we have investigated properties of the ground
state of RNA secondary structure models, and the transi-
tion to the molten phase at a finite temperature. We have
focused our attention on the excess energy ∆EN (and the
similarly defined excess free energy ∆FN ) of a chain of
N nucleotides due to the presence of boundaries. Since

any pairing of two bases automatically splices out a finite
segment of the chain, this excess energy defines the char-
acteristic energy scale for the competition between base
pairing on a given length scale (measured by the num-
ber of nucleotides inbetween) and the adjustments in the
secondary structure necessary in order to accommodate
the pairing. From numerical investigations of a random
energy model with exponential distribution of pairing en-
ergies, and a random sequence model with more realistic
base pairing and base stacking energies, we have estab-
lished that ∆FN has a fluctuation proportional to lnN in
the entire low temperature glass phase. The mean value
of ∆FN , on the other hand, acquires a ln2 N term due to
accumulation of contributions from smaller scales.

As temperature increases towards the transition, we
observe that fluctuations of ∆FN , or equivalently, varia-
tion of the free energy cost to accommodate an inserted
pair [i.e., the relative strength of different terms in the
sum in Eq. (4)] decreases, hence base pairing becomes less
specific. As T → Tg, the amplitude of the lnN term van-
ishes quadratically with the distance to the critical point.
This behavior is in striking resemblance to the glass tran-
sition of an elastic manifold in two dimensions subject to
a random, uncorrelated potential [33,34]. It would be in-
teresting to quantify this connection mathematically.

We have also studied scaling properties in the ground
state under a power-law distribution of the pairing en-
ergies εi,j . Such distributions may be encountered in a
coarse-grained description of real RNA molecules with se-
quence design [35,36]. In this case, ∆EN competes with
the strongest bond on the chain. Based on extremal statis-
tics arguments, we are able to express the exponent ω
characterizing the power-law growth of ∆EN with N in
terms of the exponent α for the power-law distribution of
εi,j. This relation is verified by numerical data.

Geometrical properties of base pairing in the RNA sec-
ondary structure can be characterized with the distribu-
tion of pairing distances. Our studies of the ground state
show that this distribution is well described by a power-
law decreasing function with an exponent η = −4/3, in
agreement with previous findings [15]. This behavior is
surprisingly insensitive to the models used for the bond
energies. In the molten phase, however, it takes the value
η0 = −3/2. It would be desirable to find an analytic foun-
dation for these observations.
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Note added

After submission of the paper we became aware of a
manuscript by M. Lässig and K.J. Wiese [37] where a field-
theoretic renormalization group treatment of the glass
transition is presented. The analysis has been further re-
fined [38] and yielded a value ζg � 0.64 at the glass tran-
sition.
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24. M. Mézard, J. Phys. 51, 1831 (1990)
25. J. SantaLucia Jr, Proc. Nat. Acad. Sci. USA 95, 1460

(1998)
26. S. Karlin, A. Dembo, Adv. Appl. Probab. 24, 113 (1992)
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